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A NOTE ON REALIZING POLYNOMIAL 
ALGEBRAS 

BY 

J. A G U A D E  

ABSTRACT 

We characterize the polynomial algebras over Z which are realizable as the 
integral cohomology of some space, under the assumption that there are not two 
generators in the same dimension. 

Let A = Z [ x , . . . , x , ]  be a graded polynomial algebra on generators x~, 

i = l , ' - ' , r ,  of dimensions dimx~=n~, n~=<" ' - - - n , ,  i = l , " - , r .  A classical 

problem in Algebraic Topology is the following: 

PROBLEM. For what values of n , , . . . ,  nr does there exist a space X such that 

H * ( X ; Z ) ~  A ? 

If such a space exists we say that A is realizable. We refer to [n~, • •., n,] as the 

type of A and if A is realizable we say that the type In1," • ", nr] is realizable. 

Thus the problem can be restated as follows: what types are realizable? A lot of 

work has been done in trying to solve this problem but it remains still open. The 

only known examples of realizable polynomial algebras over the integers are 

those isomorphic to the cohomology of products of BU(n) ,  BSU(m),  BSp(k), 

n, m, k = 1, 2, • • •. The standing conjecture is that these are the only ones. In this 

note we affirm this conjecture and we solve the above problem in the case in 

which all generators have distinct degrees. We prove: 

THEOREM 1. The only  types [nl, " ", nr], n! < .  • • < n,, tha t  are real izable  are 

the f o l l o w i n g  : 

(a) [ 2 , 4 , 6 , . . . , 2 n ] ,  

(b) [ 4 , 8 , . . . , 4 n ] ,  

(c) [2,4,8,-  • . ,4n],  

(d) [4, 6,-" ", 2n]. 
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First of all, it is well known that the types (a), (b), (c), (d) are realizable by 

BU(n) ,BSp(n) ,CP~× BSp(n)  and BSU(n) ,  respectively.  Hence ,  we have to 

prove  that if the type f ro , ' "  ", n,] is realizable then it coincides with one of the 

types (a), (b), (c), (d). 

The  proof  is based on the powerful  results of [1] and also on the results on 

algebras over  the mod 2 S teenrod  algebra, conta ined in [4] and [5]. For  the sake 

of clarity we list all these results: 

(1.1) ([1]) If A = Z , [ x , , . . . , x , ]  is a polynomial  algebra over  the mod p 

S teenrod  algebra and the degrees  of xi, i = 1, • •. ,  r are pr ime to p then A is a 

product  of the irreducible types listed in [3]. 

(2.1) ([5]) If a polynomial  algebra over  Z2 admits an action of the mod 2 

S teenrod  algebra and has a genera tor  in dimension n then it has a genera tor  in 

dimension k for all k such that k 1 ( .  k) ~- 1 (2). 

To  state the results of [4] we need some terminology.  Let  A be a polynomial  

algebra over  Z2 and let fro, • • ", n,], nl < • • • < nr, be the type of A. We say that 

[ n l , - " , n , ]  is allowable if the der ived t runcated polynomial  algebra A / D  3 

admits the s tructure of an algebra over  the mod 2 S teenrod  algebra. We say that 

[nl , -  • -, n,] is i rreducible if it is not a disjoint union of two non-empty  al lowable 

types. We say that fro, • • ", n,] is simple if it is allowable, i rreducible and contains 

an odd integer.  In [4] the following is proved:  

(3.1) ( lemma 2.1) If [nl, • • -, n,] is allowable and for some i, t, n, < 2' < n,+l and 

nC.{n,+~,. . . ,n,} for  2 ' < n < 2 ' + 2 '  1, then [nl , ' " ,n~]  and [ n , + l , ' " , n , ]  are 

both allowable. 

(3.2) ( lemma 2.3) Suppose  f ro , ' "  ", n,] is allowable. If wheneve r  n, = 2' (i > 1) 

then there  exists j so that 2' < nj < 2' + 2 '÷1 then [nl, • - -, nr] is irreducible,  

(3.3) [ n l , ' "  ", n,] is allowable if and only if [ 2 n l , . . . ,  2n,] is. 

(3.4) The  only simple type containing a single odd entry,  with nl = 4 is [4, 6, 7]. 

PROPOSITION 2. If  the type [nl,'" ", n,] is realizable then it can be expres- 

sed as a union of some of the following types: (A) [ 4 , 6 , - - . , 2 n ] ;  (B) 

[ 4 , 8 , . . . , 4 ( n - 1 ) , 2 n ] ;  ( C ) [ 4 , 8 , . - . , 4 n ] ;  ( D ) [ 4 , 1 2 ] ;  (E) [4,24]; ( F ) [ 2 ] ;  

(G) [12, 16]; (H) [4, 12, 16,24], [4, 10, 12, 16, 18,24], [4, 12, 16,20,24,28,36] ,  

[4, 16, 24, 28, 36, 40, 48, 60]. 

PROOF. Let  us deno te  by p~, . . . ,  p, the primes > 7 which divide n ~ , . . . ,  n,. 

For  each pi, i = 1, • •., t, let us choose an integer  a~ pr ime to p~, such that a~ ~ --- 1 
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(pl) and let us consider the following system of congruences: 

x-= 3 (8), (7), (5), 

x -= 5 (9), 

x q0,). 
It is clear that we can find a solution k of this system. Since k is prime to 

2, 3, 5, 7, n,, i = 1, • •., r, by a classical theorem of Dirichlet, there is a prime p > 7, 

p > n , ,  i = l , - . - , r ,  such that p ~ k  (N), N = 2 . 3 . 5 . 7 . n ~ . . - n , .  This p r i m e p  

has the following property: if n , = 2 m  and p = - I  (m) then m = 1 , 2  and if 

p ~- - 1 (m) then m = 1,2,3,4,6,  12. 

Let X be a space such that H * ( X ; Z ) ~ - Z [ X l , . . . , x , ] ,  dimx, =n, .  Then 

H * ( X ;  Zp) ~ Zp[x , , . . . ,  x,] and so the type [ n , . . . ,  n,] is realizable mod p. Since 

p does not divide n , - . - ,  n,, we can apply (1.1): the type [m, ' "  ", nr] must be a 

combination of the irreducible types listed in [3]. But each type in the list in [3] 

can only occur for some primes p and one easily checks that the choice of p we 

have made allows only the types (A) to (H) to appear. • 

From (2.1) we can see that not all types (A) to (H) in Proposition 2 are 

realizable and so the converse of Proposition 2 is certainly not true. If we 

consider only primes > 7 then all types (A) to (H), except (E) and (G), are 

realizable. However,  it is not true that every type which is realizable for all 

primes > 7  is a combination of types (A), (B), (C), (D), (F), (H). For a 

counterexample, see [1], example 1.4. 

PROPOSITION 3. I f  n > 3  is odd then the types [ 4 , 8 , . . . , 4 ( n -  1), 2n] and 

[2, 4, 8 , - . . ,  4(n - 1), 2n] are not realizable. 

PROOF. It clearly suffices to prove the proposition for the second type only. If 

such an algebra is realizable it should admit an action of the mod 2 Steenrod 

algebra and so the type [ 2 , 4 , . . . , 4 ( n - 1 ) , 2 n ]  is allowable. By (3.3), 

[ 1 , 2 , 4 , 6 , . - . , 2 ( n - 1 ) , n ]  is also allowable. By (3.1) the type [4 ,6 , - - . ,  

2(n - 1), n] is allowable. Hence, by (3.2), [4, 6 , - ' - ,  2(n - 1), n] is simple. Since it 

contains a single odd entry and m = 4 ,  we conclude by (3.4) that 

[4, 6 , "  ", 2(n - 1), n] = [4, 6, 7], a contradiction. • 

PROOF OF THEOREM 1. Let us assume that the type [m, ' "  ", n,], m < " '"  < nr, 

is realizable. From Proposition 2 we get that In1," • ", n,] should be a union of the 

types (A) to (H). Since we are assuming m < " "  < n,, there is at most one 

generator in dimension 4. 

(2.1) yields that the existence of a generator in dimension 12 implies that there 

is a generator in dimension 8. Similarly, if there is a generator in dimension 24 
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then there is also a generator in dimension 16 and, in the same way, a generator 

in dimension 40 implies a generator in dimension 32. From these facts and 

Proposition 3 we get that the types (B) (n > 3, n odd), (D), (E), (G) and (H) are 

not realizable. 

If there is no generator in dimension 4, we see that the algebra has type (F) 

and the proof is concluded. Let us assume that there is a generator (and only 

one) in dimension 4. In this case, [nl, • • ", n,] coincides with one of the types (A), 

(B), (C), (D), (E) or (H), plus, perhaps, the types [2] and [12, 16]. If [12, 16] does 

not appear, the proof is concluded because the types (B) (n odd, n > 3), (D), (E) 

and (H) are not realizable. If G = [12, 16] does appear then, since there are no 

two generators in the same dimension, the possible cases reduce to: 

(a) [4, 6, 8, 10, 12, 16], (A(n = 5) + G); 

(b) [4, 6, 8, 12, 16], (B(n = 3) + G); 

(c) [4, 8, 12, 16], (C(n = 2) + G); 

(d) [4, 12, 16, 24], (E + G); 

(e) [4, 12, 16], (A(n = 2) + G); 
(f) [4, 6, 12, 16], (A(n = 3) + G) 

(where we omit the possible existence of a generator of degree 2). Case (c) 

coincides with type C(n = 4) and so it is realizable. The cases (d), (e) and (f) are 

not realizable because they contain a generator in dimension 12 but no generator 

in dimension 8. Thus, it remains only to prove that cases (a) and (b) are not 

realizable. In order to do this we can for instance consider the prime p = 23 and 
then apply (1.1): the types (a) and (b) should be a combination of the types listed 

in [3]. Since 23 # 1, 3 (8), the type 12 of [3] cannot appear. All other types from 5 

to 37 (see the list of [3]) contain generators in dimensions > 16 and so they 

cannot appear. If the generator of degree 16 in (a) or (b) comes from type 1 in [3] 

then there should be a generator in dimension 14 and this is not the case. Since 

23 # 1 (8), the generator of degree 16 cannot come from type 3. Hence it can only 

come from type 2a with 23 = 1 (m) or from type 2b with m = 8. But if 23 ~- 1 (m), 

m >1 ,  then m =2,11 ,22  and since the values m =11,22 would produce 

generators of degree > 16, we see that m = 2 and so the type which produces the 

generator of dimension 16 produces also a generator of dimension 4, but no 

generator of dimension 6. This ends the proof if we notice that the generator of 

degree 6 cannot come from any type in the list of [3] when p- -23 ,  without 

producing another generator of degree 4. • 

Notice that Theorem 1 is not a consequence of the results of [2] and [4] 

because the type [4, 6, 8, 12, 16] which we have eliminated using the results of [1] 

cannot be eliminated using only the results of [2] and [4]. This is clear for [2] and 
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also for [4] if we observe that the algebra of type [4, 6, 8, 12, 16] admits an action 
of the mod 2 Steenrod algebra because it can be written in the form 2[2, 3] + 
22[2, 3] + 2'[1]. 
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